15.04.2024

SOUND - VISION - VIBRATION

Mario Narbekov, Johan Hallimäe

Modular Cabin

Client: Kipsik OÜ Ordered: 05.04.2024 Contact person: Kalle Kask

ACOUSTIC MEASUREMENTS OF MODULAR CABIN

240767-1

1 INTRODUCTION

Acoustical measurements were ordered on 05.04.2024 by Kipsik OÜ representative Kalle Kask. Measurements were conducted on 10.04.2024 at 10:00-12:00.

The purpose of the measurements was to determine airborne sound isolation, speech reduction properties and reverberation time of Modular Cabin.

Measurements and calculations were performed in accordance with EVS-EN ISO 16283-1:2014, EVS-EN ISO 717-1:2020, ISO 23351-1:2020 and ISO-354 standards.

Measurement location	Mäealuse 10/5, Tallinn
Room	Warehouse
Time and date	Wednesday, 10.04.2024, 10:00-12:00
Measurer	Mario Narbekov

2 MEASUREMENT EQUIPMENT & CALIBRATION DATES

Measurements were conducted using "Brüel & Kjær 2250" sound level meter, which corresponds to class 1 measurement equipment. The microphone was calibrated before and after the measurements.

Device	Supplier and model	Serial nr	Calibration date
Sound source	01dB LS02	DS.14090	-
calibrator	Brüel & Kjær 4231	2253338	07.09.2023 [AKUKON]
microphone	Brüel & Kjær 4966	3271301	22.03.2024 [HBK]
SLM	Brüel & Kjær 2250	3004362	22.03.2024 [HBK]

3 SPEECH LEVEL REDUCTION INDEX

3.1.1 Specimen definition

Furniture ensembles and enclosures are assembled on site using elements, which can be transferred into any room through normal-sized passage doors. They are not treated as a fixed part of the building and are beyond the scope of building regulations. These products are typically assembled in a finished room and not during the construction of the building.

The following method is applicable for entire furniture ensembles or enclosures, which form a unity that servers one or several occupants, and which are also used to provide improved speech privacy. The method is not intended for single components used in workstations (acoustic screens etc).

Owner of accreditation: Akukon Oy, Hiomotie 19, 00380 Helsinki, <u>www.akukon.fi</u>

Subsidiary: Akukon Eesti OÜ, Veerenni tn 38b, 10138 Tallinn, Eesti; tel +372 661 6900 www.akukon.ee, registry code: 14630147

3.1.2 Measurement method

The sound power level is measured in two scenarios:

- Without the product
 - The test signal is produced in an empty room while the product is absent
- With the product
 - The test signal is produced inside the product in the occupant's position

Reverberation is measured in the room with and without the product. Background noise is measured in the same positions as sound power level with the product in the room and without. Level reduction is the difference of the sound power levels measured in the two scenarios in 1/1-octave frequency bands from 125 Hz to 8000 Hz. Speech level reduction is a single-numbered quantity that expresses the corresponding reduction in A-weighted sound power level of standard speech within the entire frequency range from 125 Hz to 8000 Hz.

The lowest one-third-octave band frequency of interest is 125 Hz, meaning the room has to have a minimum volume of 150 m^3 . Measured cabin and conditions are shown on photos 1 and 2.

Photo 1. Cabin with sound source inside (front side).

Photo 2. Sound source position without specimen.

3.1.3 Environment and conditions

Volume of room	~ 1139 m ³
Total surface area	~ 696 m ²
Microphone positions	6
Test Specimen	Modular Cabin

3.2 Measurement results

The level reduction depends strongly on the ratio of covered area to the total area of the external envelope of the test specimen. Enclosures, which have coverage over 99%, typically produce $D_{S,A}$ results between 15dB and 30dB. Furniture ensembles, which have coverage under 30%, typically produce $D_{S,A}$ results between 0 dB and 5dB.

Adequate target values of $D_{S,A}$ cannot be unambiguously given since the perceived acoustic performance in situations depends on various factors: the distance from the product, the speech effort used by the occupant inside the product, the speech level reduction, the acoustic conditions of the surrounding room and background noise level.

Speech level reduction index for the different furniture models were measured and calculated according to the ISO 23351-1 standard. The measurement results are presented in table 1.

Table 1. Speech level reduction index D'S,A

Furniture model	D' _{S,A} , dB	Measurement report
1. Modular Cabin	25.8	Akukon 240767 – M01

* Background noise might have an effect on measurement results.

4 AIRBORNE SOUND REDUCTION INDEX

Measurements and calculations were performed in accordance with EVS-EN ISO 16283-1, EVS-EN ISO 717-1 standards.

Results of the measurements are shown in table 2.

Table 2. Airborne sound reduction index R'_w (C; C_{tr}), dB

Description	R' _w (C; C _{tr})	Protocol
2. Between warehouse and cabin, front side	30 (-1; -2)	Akukon 240767-M02-26664
3. Between warehouse and cabin, rear side	31 (0; -2)	Akukon 240767-M03-26665
4. Between warehouse and cabin, all sides	34 (-1; -2)	Akukon 240767-M04-26666

4.1.1 Spectrum adaptation terms C and Ctr

As of the requirements of ISO 717-1 spectrum adaption terms C and C_{tr} are used. The adaption terms may be used to assess the sound insulation in respect to the different noise sources.

Spectrum adaption term C takes into account living activities (talking, music, radio, TV).

5 REVERBERATION TIME

The measurements were performed in accordance with EVS-EN ISO 354.

Reverberation time T is time, in seconds, that would be required for the sound pressure level to decrease by 60 dB after the sound source has stopped. During measurements inner back wall was covered with acoustic elements.

Results are shown in table 3.

Table 3. Measured reverberation time T, 1/1 octave bands

Measured reverberation time, [sec]						
Location	125 Hz	250 Hz	500 Hz	1kHz	2kHz	Protocol
5. Modular Cabin	0.6	0.4	0.3	0.2	0.2	Akukon 240767-M05-26667

fue

Johan Hallimäe Consultant

Mario Narbekov Consultant

Determination of speech level reduction according to ISO 23351-1

Customer:	Kipsik OÜ
Order date:	06.02.2024
Contact person:	Kalle Kask
Measuring point:	Mäealuse 10/5
	12618 Tallinn
Test date:	07.03.2024

Specimen: Modular Cabin Comments:

D dB 13.8 20.7 25.9 28.9 28.8 30.1 35.4 25.8	40.0 · · · · · · · · · · · · · · · · · ·									
13.8 20.7 25.9 28.9 28.8 30.1 35.4	30.0 · [8] [9] [2] [2] [2] [2]									
20.7 25.9 28.9 28.8 30.1 35.4	[ар] Ф _{20.0}									
25.9 28.9 28.8 30.1 35.4	[ар] Ф _{20.0}									
28.9 28.8 30.1 35.4										
28.8 30.1 35.4										
30.1 35.4										
35.4	10.0									
	10.0	-								
25.0		4		1						_
23.8	I	-	250 1/1 -o	500	f [2000 2000	. 400 400		8000
							, and , n			
		D _{S,A}	speed	ch lev	el redu	ction,	, in dB			
			v							
)138 Ta	allinn	////					
	ukon OY osa	Composed Mario Na Veerenni 3 tel 6616 90	Veerenni 38b, 10 tel 6616 900	f 1/1 -o D level D _{S,A} speed Composed by Mario Narbekov Veerenni 38b, 10138 Ta tel 6616 900	f 1/1 -octave D level reduc D _{S,A} speech lev Composed by Mario Narbekov Veerenni 38b, 10138 Tallinn tel 6616 900	Key f 1/1 -octave freque D level reduction, in D speech level redu Composed by Confir Mario Narbekov Joha Veerenni 38b, 10138 Tallinn Image: Confir tel 6616 900 Image: Confir ukon OY osa Image: Confir	f 1/1 -octave frequency b D level reduction, in dB D _{S,A} speech level reduction, Composed by Confirmed b Mario Narbekov Johan Hall Veerenni 38b, 10138 Tallinn El 6616 900 tel 6616 900	Key f 1/1 -octave frequency band, in D level reduction, in dB D _{S,A} speech level reduction, in dB Key Composed by Confirmed by Mario Narbekov Johan Hallimäe Veerenni 38b, 10138 Tallinn Image in the folder on	Key f 1/1 - octave frequency band, in Hz D level reduction, in dB D _{S,A} speech level reduction, in dB Mario Narbekov Confirmed by Mario Narbekov Johan Hallimäe Veerenni 38b, 10138 Tallinn Image (M) tel 6616 900 Registri	Key f 1/1 -octave frequency band, in Hz D level reduction, in dB D _{S,A} speech level reduction, in dB Mario Narbekov Confirmed by Mario Narbekov Johan Hallimäe Veerenni 38b, 10138 Tallinn Image (M) tel 6616 900 Registrikoot:

Käesoleva protokolli osaline avaldamine on lubatud ainult Akukon Eesti OÜ poolt antud kirjaliku loa alusel.

Kipsik OÜ Mäealuse 10/5

Measurement report

Modular Cabin

Field measurement of airborne sound insulation between rooms According to the standards EVS-EN ISO 16283-1:2014 and EVS-EN ISO 717-1:2020

Client:	
Contact:	

Order:

12618 Tallinn Kalle Kask 05.04.2024 10.04.2024 Date of test:

Location: Mäealuse 10/5 12618 Tallinn

Measurement object

Front side of the cabin

Measurement date and location

The measurement was made on 10.04.2024 at Mäealuse 10/5, 12618 Tallinn.

Measurement equipment

sound level meter microphone capsule sound level calibrator sound source

Brüel & Kjær 2250 Brüel & Kjær 4966 Brüel & Kjær 4231 01dB LS02

sn. 3004362 sn. 3271301 sn. 2253338 sn. DS.14090

According to ISO 12999-1:2014, the measurement of the airborne noise emitted by the object is based on an uncertainty of \pm 0,9 dB (k = 1, two-way confidence interval) of the insulation index R'w.

Tallinn 15.04.2024,

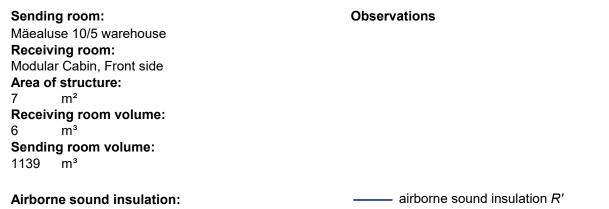
Mario Narbekov, Composed by

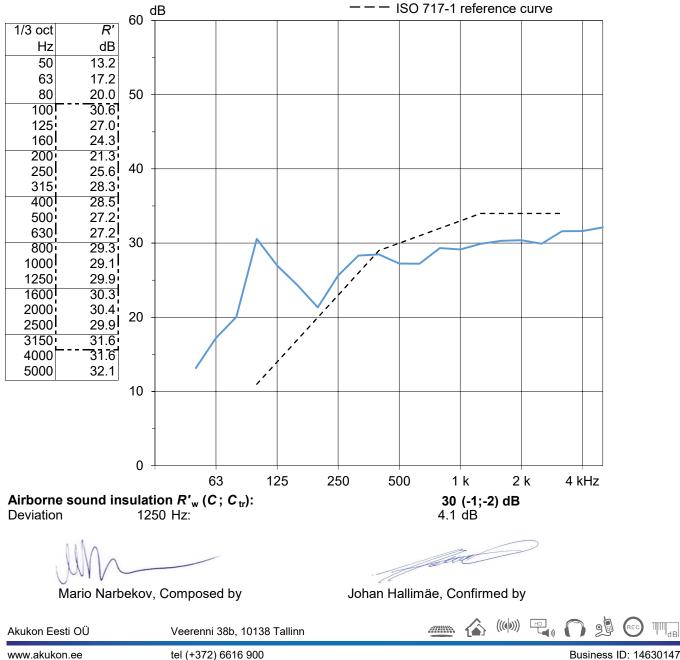
flood

Johan Hallimäe, Confirmed by

Akrediteeringu omanik: Akukon Oy, Hiomotie 19, 00380 Helsinki

Tütarettevõtte: Akukon Eesti OÜ, Veerenni 38b, 10138 Tallinn


Business ID: 14630147


dB

Publishing parts of this report requires a written permission issued by Akukon Eesti OÜ.

Field measurement of airborne sound insulation between rooms

According to the standards EVS-EN ISO 16283-1:2014 and EVS-EN ISO 717-1:2020

Akukon Eesti OÜ is a subsidiary of Akukon Ltd.

Publishing parts of this report requires a written permission issued by Akukon Eesti OÜ.

dB

Field measurement of airborne sound insulation between rooms According to the standards EVS-EN ISO 16283-1:2014 and EVS-EN ISO 717-1:2020

Client:	Kipsik OÜ
	Mäealuse 10/5
	12618 Tallinn
Contact:	Kalle Kask
Order:	05.04.2024
Date of test:	10.04.2024

Location: Mäealuse 10/5 12618 Tallinn

Measurement object

Rear side of the cabin

Measurement date and location

The measurement was made on 10.04.2024 at Mäealuse 10/5, 12618 Tallinn.

Measurement equipment

sound level meter microphone capsule sound level calibrator sound source Brüel & Kjær 2250 Brüel & Kjær 4966 Brüel & Kjær 4231 01dB LS02 sn. 3004362 sn. 3271301 sn. 2253338 sn. DS.14090

According to ISO 12999-1:2014, the measurement of the airborne noise emitted by the object is based on an uncertainty of \pm 0,9 dB (k = 1, two-way confidence interval) of the insulation index R'_{w} .

Tallinn 15.04.2024,

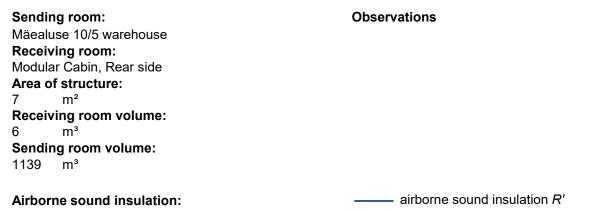
Mario Narbekov, Composed by

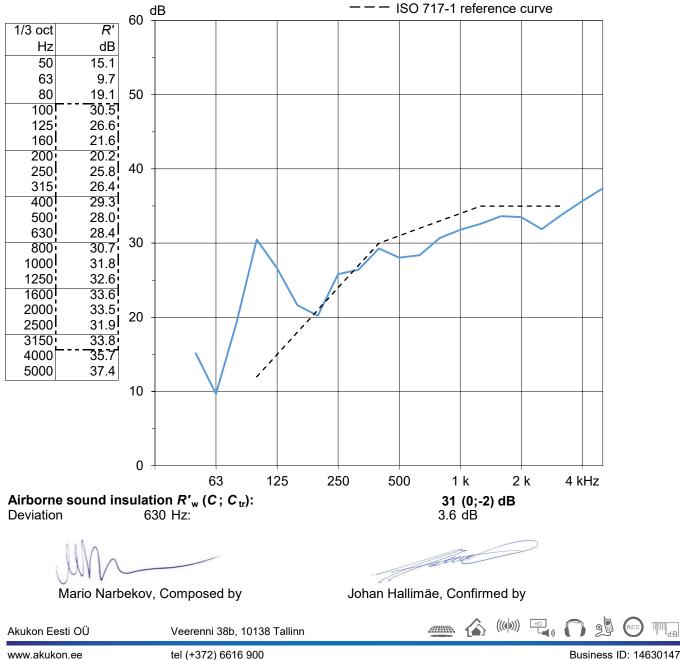
for

Johan Hallimäe, Confirmed by

Akrediteeringu omanik: Akukon Oy, Hiomotie 19, 00380 Helsinki

Tütarettevõtte: Akukon Eesti OÜ, Veerenni 38b, 10138 Tallinn


Business ID: 14630147


dB

Publishing parts of this report requires a written permission issued by Akukon Eesti OÜ.

Field measurement of airborne sound insulation between rooms

According to the standards EVS-EN ISO 16283-1:2014 and EVS-EN ISO 717-1:2020

Akukon Eesti OÜ is a subsidiary of Akukon Ltd.

Publishing parts of this report requires a written permission issued by Akukon Eesti OÜ.

dB

Field measurement of airborne sound insulation between rooms According to the standards EVS-EN ISO 16283-1:2014 and EVS-EN ISO 717-1:2020

Order:

Kipsik OÜ Mäealuse 10/5 12618 Tallinn Contact: Kalle Kask 05.04.2024 Date of test: 10.04.2024

Location: Mäealuse 10/5 12618 Tallinn

Measurement object

All sides of the cabin

Measurement date and location

The measurement was made on 10.04.2024 at Mäealuse 10/5, 12618 Tallinn.

Measurement equipment

sound level meter microphone capsule sound level calibrator sound source

Brüel & Kjær 2250 Brüel & Kjær 4966 Brüel & Kjær 4231 01dB LS02

sn. 3004362 sn. 3271301 sn. 2253338 sn. DS.14090

According to ISO 12999-1:2014, the measurement of the airborne noise emitted by the object is based on an uncertainty of \pm 0,9 dB (k = 1, two-way confidence interval) of the insulation index R'w.

Tallinn 15.04.2024,

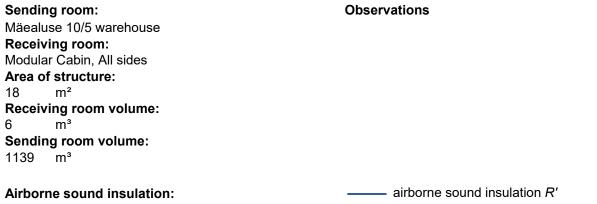
Mario Narbekov, Composed by

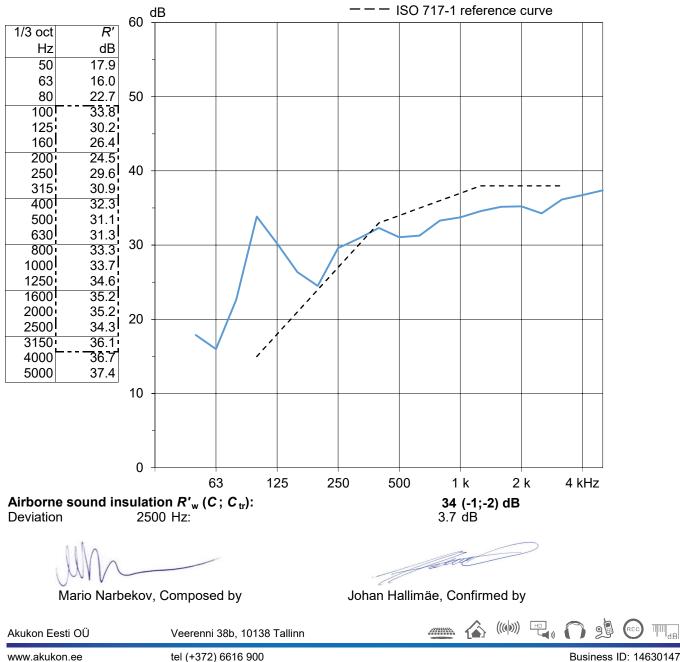
for

Johan Hallimäe, Confirmed by

Akrediteeringu omanik: Akukon Oy, Hiomotie 19, 00380 Helsinki

Tütarettevõtte: Akukon Eesti OÜ, Veerenni 38b, 10138 Tallinn


Business ID: 14630147


dB

Publishing parts of this report requires a written permission issued by Akukon Eesti OÜ.

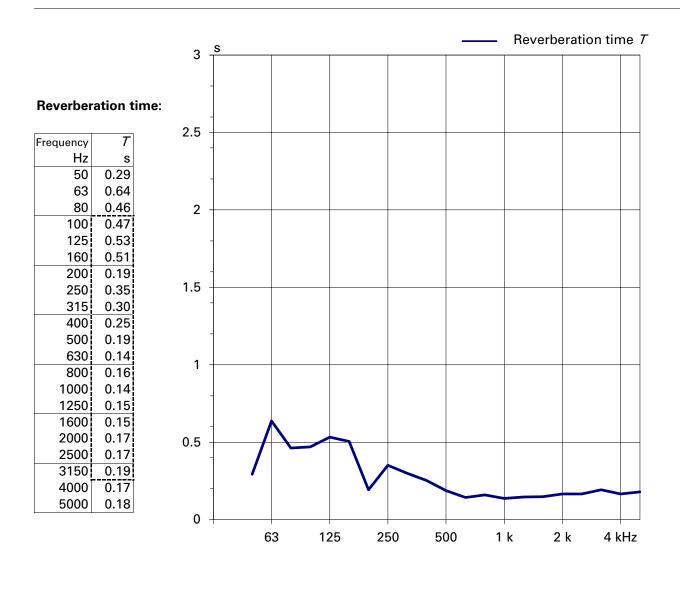
Field measurement of airborne sound insulation between rooms

According to the standards EVS-EN ISO 16283-1:2014 and EVS-EN ISO 717-1:2020

Akukon Eesti OÜ is a subsidiary of Akukon Ltd.

Publishing parts of this report requires a written permission issued by Akukon Eesti OÜ.

dB


Reverberation time measurements

According to standard EVS-EN ISO 354:2003

Customer:	Kipsik OÜ	Notes:
	Mäealuse 10/5	Inner back wall was covered with acoustic panels
	12618 Tallinn	
Order:	5.04.2024	
Contact:	Kalle Kask	
Date:	10.04.2024	Room:
Location:	Mäealuse 10/5	Modular Cabin
	12618, Tallinn	
Object:	Modular Cabin	

Nr of noise source positions:

2

Mario Narbekov

Johan Hallimäe

Käesoleva protokolli osaline avaldamine on lubatud ainult Akukon Oy poolt antud kirjaliku loa alusel.